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ABSTRACT

manuel Swedenborg was an eighteenth-century scientist and philoso-

pher before he was called to his use as a theological revelator. His
background in science allowed him to draw on this knowledge to illus-
trate divine truths. Swedenborg states in [11] that “the Divine is every-
where” so this author investigates what analogies Swedenborg may have
used if he had a stronger background in mathematics.'

1. ASYMPTOTES AND PARABOLAS

As one of the advanced scientists in his day, Swedenborg uses images
from science throughout his theological works to illustrate divine truths.
He compares the growth of trees and plants to human prolification [20], he
uses the heat and light from our sun to illustrate the nature of Divine Love
and Divine Wisdom [12], and he draws on his knowledge of the human
form frequently to describe the interconnectedness of heavenly systems
[16] often referred to as the Grand Man [9].

But what if Swedenborg had been a stronger mathematician than a
scientist? What kinds of images might he have used to explain divine
concepts?

Swedenborg does use concepts in mathematics to illustrate the perfec-
tion of angels, but I get the impression that he was not the most comfort-
able with these concepts. In [18], he states:
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'All pictures are found in Wikimedia Commons: commons.wikimedia.org. Reference to
sources are given in square brackets [1].
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I said to the spirits around me that no one, save the Lord alone, is perfect.
The angels are not perfect, for heaven is not holy before the Lord [Job xv
15]; nevertheless, the angels can become better and better even to eternity,
but they can never become holy in themselves or as to their proprium.
Because this seemed strange to the spirits when represented in a spiritual
manner, it was therefore elucidated by like things in nature, namely, that
there are approximations to infinity, as they are called, which neverthe-
less do not reach infinity, as for example, between the asymptotes of the
parabola. But these things must be passed over because they are not

understood by many; . . .

Is it possible that the math-
ematical concepts were \

“passed over” because he

didn’t have a strong math-

ematical background himself?

Perhaps Swedenborg thought —

his audience would be more |

familiar with less abstract

analogies in science, sohemay ;| \ 4

have intentionally avoided

using abstract mathematical \

analogies. Swedenborg did I I | 1
S o4 03 2 4 0 1 2 3 4 35

make a mathematical error ‘ o

here: parabolas do not have A hyperbola approaching its asymptotes
asymptotes, but their close relatives, hyperbolas, do. Swedenborg was
very careful not to make such a mistake in a published work, as seen in
[15], where he correctly attributes the asymptotic property to the hyper-

bola when illustrating the continual perfection of angels:

Although the wisdom of a wise man in heaven increases to eternity, yet
there is no such approximation of angelic wisdom to the Divine Wisdom
that it can reach it. It may be illustrated by what is said of a straight line
drawn about a hyperbola, continually approaching but never touching it

and by what is said about squaring the circle.
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Swedenborg used parts of his Spiritual Diary as a rough draft for

works intended for publication many times [7], so errors like attributing

asymptotes to parabolas left in the Spiritual Diary should not alarm

Swedenborgian scholars. Swedenborg had summarized the basic math-

ematical knowledge of his day in his notebook [17], so I can imagine

Swedenborg consulting his notebook or one of his mathematician friends

before sending his work Divine Providence to the publisher.

You may have also noticed his reference to squar-

RE

ing the circle, a classical geometrical problem of

.

using a straight edge and compass to produce a
square with the same area as a given circle. In
Swedenborg’s time, there were algorithms that

AN
\ \\]>/ could get close, arbitrarily close with enough

effort, but no exact solution was known. It was

Squaring the Circle

proven to be impossible in 1882 when Carl Louis
Ferdinand von Lindemann discovered that 7 was

not an algebraic number. [5]

2. CONTINUOUS AND DISCRETE

So what opportunities could Swedenborg have taken to bring in math-

ematical analogies? One opportunity that stands out is his discourse on

continuous and discrete degrees, found in [14]:

Continuous degrees are defined as lessenings or decreasings from grosser
to finer, or from denser to rarer; or rather as growths and increasings
from finer to grosser, or from rarer to denser, exactly like gradations of
light to shade, or of heat to cold. Discrete degrees, however, are quite
different. They are like things prior, posterior and final, and like end,
cause and effect. These degrees are called discrete, because the prior is by
itself, the posterior by itself and the final by itself, but yet taken together
they make one. The atmospheres from highest to lowest, or from the sun
to the earth and which are called ethers and airs, are separated into such
degrees. They are like simple things, collections of those, and again

collections of these which taken together are called a composite. These
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degrees are discrete because they exist distinctly and
these are understood as degrees of height, whereas
the former degrees are continuous because they in-
crease continuously, and these are understood as de-

grees of breadth.

While using gradations of light to shade to illus-
trate continuous degrees and levels of the atmo-
sphere to illustrate discrete degrees is effective, the
number line gives a natural analogy as well. The
field of integers, commonly called whole numbers, are
discrete entities, while the field of real numbers,
which include fractions and decimal numbers, are
continuous entities.

Both systems of numbers are well-ordered, mean-
ing that given any two different numbers, one is
“higher” or “larger” than the other. This compara-
tive operator is transitive, meaning that if a is larger
than b, and if b is larger than c, then a must be larger
than c.

But the two number systems have one key dif-
ference which distinguishes the discrete nature of
the integers from the continuous nature of the reals.
Given an integer, such as 37, you can easily distin-
guish the next higher integer, 38, just as when you
select an atmosphere, such as the stratosphere, there
is the next higher atmosphere, the mesosphere. But
if you are given a real number, such as 23.7, there is
no “next” higher real number. Whatever larger num-
ber you choose, such as 23.7000001, there will al-
ways be a real number between the two, much like it
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appears that there can always be a shade of light between two different
degrees of brightness.?

To see these concepts working

. int ts (di t
together to make a whole, consider integer exponents (discrete)

the family of polynomial functions. J ¢ \
Each term of a polynomial is dis- 5 3 2
o 4x° —2.4x° + 6.34x

crete, as it can be labeled by its inte-
ger exponent, yet each term as a

continuous variety by having any real coefficients (continuous)

real number serve as the coefficient.
Both the discrete element and the An example of a polynomial

continuous element are needed to define the family of all polynomials.

: 3 Furthermore, if you expand the family of
x x X
¢ =l+x+—+—+—+--| polynomials to include infinitely many
131 4! : e
2t 3t 4 terms (but still a countable infinity, since
3 5 7
. x o x X the terms are discrete), then Taylor’s
SINX =x-——+——-—+"" o
3t s 7! Theorem shows that every smooth (infi-

Two functions written as nitely differentiable) function, such as the
infinite polynomials sine and exponential functions, can be
defined as a polynomial, with its con-

tinuous and discrete portions.® [4]

3. THE GREATEST AND LEAST

Another concept with an accessible mathematical analogy is found in
[13]:

That the Divine is the same in things greatest and least, may be shown by

means of heaven and by means of an angel there. The Divine in the whole

2Tt has been noted [2] that while Swedenborg outlined his theological revelations, his
knowledge of sciences was not more advanced than the other scholars of his day. The field of
physics has changed quite a bit since Swedenborg’s time, and the discovery of photons, a
discrete particle responsible for electromagnetic radiation including visible light, would allow
us to categorize different shades of light and darkness as discrete degrees, not continuous
degrees, even though the “distance” between these degrees is smaller than the human eye can
distinguish.

’In some cases, the intervals on which these infinite polynomials converge to the function
may be finite. As an extreme case, it is possible to construct functions where this interval of
convergence is a single point.
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heaven and the Divine in an angel is the same; therefore even the whole
heaven may appear as one angel. So is it with the church, and with a man
of the church. The greatest form receptive of the Divine is the whole
heaven together with the whole church; the least is an angel of heaven
and a man of the church. Sometimes an entire society of heaven has

appeared to me as one angel.

The whole of heaven can be seen in the human form. A single society can
be seen in the human form. A single person can be seen in the human form.
It is the same for the greatest and @)

least things.
Even the functions of a single

b)

cell can be organized by systems

found in the human body: Lysos-
omes carry out digestion; the mito-
chondria act as the muscular

system; the cytoskeleton forms the
cell’s skeletal system and acts as a
circulatory system; and centrioles
carry out the cell’s reproductive ac-
tivities. [1]

Mathematical objects known as
fractals, named for their fractional
dimensions, can display this con-
cept extremely well, since the com-
ponents of a fractal are built by
copying the larger structure. No e)
matter how far you “zoomin” on a
portion of the fractal, the same pat-
terns continue to emerge.

Consider the Minkowski sau-
sage, named by Mandelbrot to
honor this Russian-born mathema-
tician [6], constructed by replacing
a single line segment with eight

Making the “Minkowski S "
segments each one quarter of the axing the “Mnkowsid sausage
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original’s length as shown here. To calculate the dimension of this fractal,
determine the ratio of the number of segments changing at each step (one
segment is replaced by eight), and the ratio of the size of the segments
changing at each step (the old segments are four times as long as the new
segments), then divide the logs of these ratios: °®/,,,4) = 1.5. Therefore the
dimension of the Minkowski sausage is 1.5.

To illustrate the idea that “the Divine is the same in things greatest and
least”, one can see that looking at any part of this fractal is identical to
looking at the entire fractal. There is no loss of detail as you zoom in or out.

4. DIVINE INFINITY

Most people consider infinity to be a quantity without limit. The
quantity of positive integers is one example. If you started counting today
(1, 2, 3, ...) and had an eternity of time to spend, there is no number you
would not eventually reach, but you would never be able to count them
all. Still, because there is no number that is out of reach, this infinity is
called a countable infinity by those who study set theory. A countably
infinite set is a set that can be lined up, one-to-one, with the positive
integers. [4]

Examples of countably infinite sets are shown in the following chart.
The pattern shows how they may be lined up with the positive integers.

Set Example

Positive Integers 1 2 3 4 5 6 7 8 9 10 ...
0Odd Positive Integers 1 3 5 7 9 11 13 15 17 19 ...
All Integers 0 1 -1 2 -2 3 -3 4 4 5 ..
Prime Numbers 2 3 5 7 11 13 17 19 23 27 ..
Rational Numbers in (0,1 2 s s Vo la s s s s Vs ...
Pairs of Positive Integers | (1,1) (1,2) (2,1) (1,3) (2,2) 3,1) (1,4) (2,3) 3.2) (4.D) ...

Since all of these sets can line up, one-to-one, with each other, mathemati-
cians consider all these sets to be the same size. You might find it odd that
that selecting only the odd integers gives a set the same size the all the
integers, when common sense would tell you the set should only be half as
big. But what would half of infinity look like if it were different from
infinity?
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Similarly, it is not intuitive that the rational numbers between zero
and one would be a countably infinite set, since, unlike the integers, these
numbers make up a continuous spectrum. Like the fractals, their pattern is
indistinguishable as you “zoom in.” Still, by ordering these numbers from
smaller to larger denominators, they may be lined up with the set of
positive integers.

Swedenborg talks of a Divine Infinity as something beyond this notion
of infinity in [10]

People inevitably confuse Divine Infinity with infinity of space. And
because they do not conceive of infinity of space as anything other than
nothingness, as indeed it is, neither do they believe in Divine Infinity. The
same applies to Eternity. They cannot conceive of it except as an eternity
of time, but it is manifested continually by means of time to those who

dwell within [space and] time.

Is there really an infinity larger than this? That is, is there an infinite set so
large that if you attempt to line up the elements of the set, one-to-one, with
the positive integers, you are guaranteed to fail, and something will be
missed? Swedenborg tries to illustrate this notion in [19]:

... [the Word’s] contents are countless, so that not even the angels can
exhaust them. Anything found there can be compared to a seed, which
planted in the ground can grow into a great tree, and produce an abun-
dance of seeds; these again produce similar trees to form a garden, and
their seeds in turn form other gardens, and so on to infinity. The Word of
the Lord is like this in its details, and such above all are the Ten Com-

mandments.

This outlines a geometric progression, where if each tree produces, say,
ten seeds, each generation would have ten times the seeds as the previous
generation. If you number every seed from each tree with a digit from zero
to nine, then a seed’s genealogy could be represented as a finite decimal
number between zero and one. For example, “.142857” would represent
one of the sixth generation seeds. These finite strings of digits can also be
proven to be countable, since they form a subset of all rational numbers,
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which can be linked to a subset of all pairs of integers. But the Divine Truth
in the Word has infinite depth, so the set of Divine Truths could be
compared to decimal numbers which may be infinite in length, such as
33333333 ...” or “.14159265. . .”. These can be linked, one-to-one, with
the set of real numbers between zero and one.

Is the set of real numbers really bigger than the set of rational num-
bers, which are countable? There are examples of real numbers that are not
rational, like 7 and \/5 . But like comparing odd integers to integers, this
does not make the set bigger.

In 1891, Georg Cantor published his diagonalization argument, an
elegant proof that shows that the infinity of all real numbers between zero
and one is bigger than the infinity of the positive integers. [3] The idea
presented is rather simple:

Suppose that there existed a complete 1— 5849204783...
list of real numbers that could be matched, 7_ 4759938705...
one-to-one with the positive integers. Form | 3 5500000000...
a number by taking the digit one higher | 4 _ 415926535 ...
than the first digit of the first number, then | 5 _ 4142135623 ...
the digit one higher than the second digitof | g _ 718 7818284 ...
the second number, then the digitone higher | 7 _ 1803 39887...
than the third digit of the third number, and : -
continue in like fashion. The result is a num-

n=.6816220...

ber between zero and one, call it n. In the

example shown, we selected 6, one more Cantor's Diagonalization
than 5, then 8, one more than 7, then 1, and

so on. If n were on the list, say in the 724% position, then n’s 724" digit
would not adhere to the rule for constructing n, requiring that n’s 724"
digit be the digit one higher than the 724" number’s 724" digit. This
problem would arise no matter where you attempt to find the number 1 on
our complete list, and so n cannot be in this list, meaning the list is actually
not complete. Since we are able to create this n given any attempt at
making a complete list, there cannot be a complete list, and therefore the
infinity of real numbers from zero to one is bigger than the infinity of
positive integers.
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5. OMNIPRESENCE

Related to our infinite friends, the concept of omnipresence can be a
little hard to digest. In [8], Swedenborg gives a quick definition: “Omni-
presence is infinite circumspection and infinite presence.” So how can
something be everywhere without constantly getting in the way?

Mathematics has a notion of a dense set: Given a numeric interval ], a
subset of this interval S is called dense if every subinterval of the original
interval | contains at least one element from the set S. If we choose our
interval | to be the set of real numbers from zero to one, one might think
that the only dense sets possible would have to be the same size. A smaller
set, it would seem, could not have the coverage to be “omnipresent”, or
dense, within the original interval J.

As mentioned earlier, the size of ], the set of real numbers from 0 to 1,
is an infinity larger than the countably infinite set of integers, or the
countably infinite set of rational numbers. Yet, the rational numbers are
dense within J. To prove this, I must show that if I am given an arbitrary
interval inside ], no matter how small, there must be a rational number
contained within this arbitrary interval.

Proposition: The set of rational numbers in the interval from 0 to 1 is dense
within the set of real numbers in the interval from 0 to 1.

Proof: Let K be an arbitrary inter- 0 k; k; 1
val within the set of real numbers ~e—e—e—e——¢|-sfo————o—
from0to1, andletk;and k;bethe 091 d2d3 ... dp1dpdpsr ... AN1 AN

left and right endpoints of the in- One element from the sequence, 2, must
terval K, respectively. This makes be inside the interval.

k, bigger than k;. Let x be the dif-

ference, k, — ki, of the endpoint values. Think of x as the width of the interval
K. x cannot be zero, otherwise K would not be an interval, it would just be
a point, so we can assume that x > 0. This allows us to choose N to be the
next integer larger than !/.. Since N > !/, we also know thatx>1/y,s0!/y
is a quantity smaller than the width of K.

Now define a sequence of numbers a; by defining a; =/ for each integer I

from 0 up to N. The numbers in this sequence from a set of equally spaced
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numbers, !/ apart, that span the interval from 0 to 1. The first number a, is
equal to zero, so it is either in the interval K (when k; = 0) or it is left of the
interval K (when k; > 0). Similarly the last number ay is equal to one, so it is
either in K (when k, = 1) or it is right of the interval K (when k, < 1). If none
of these points, 4;, were in the interval K, then, since the first one is left of
the interval and the last one is right of the interval, the sequence would
have to “jump over” the interval K. But since the points in the sequence are
spaced more narrowly than the width of the interval K, this is impossible.
So the first point of the sequence to pass k;, call it a,, must be in the interval
K. Since a, ="/, a, is a rational number in the interval K.

This proof can be found in most introductory analysis textbooks, like
[4], but more importantly, it shows that the concept of “omnipresence” is
not something that Swedenborg made up to describe something that
would otherwise be indescribable. [
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